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Abstract - The advent of Large Language Models (LLMs) has revolutionized the field of artificial intelligence, enabling a broad 

spectrum of applications across academic research and industrial domains. Central to this transformation is the rise of 

Transformer-based architectures, which have set new benchmarks in Natural Language Processing (NLP) tasks, including text 

generation, machine translation, and sentiment analysis. However, despite their remarkable performance, the computational 

demands of these models present significant challenges, particularly when it comes to deploying them in resource-constrained 

environments. Models like GPT-4, which boast upwards of 1.8 trillion parameters, require substantial processing power, 

memory, and storage, making them ill-suited for smaller devices such as those found on the Internet of Things (IoT) and 

embedded systems. 

This limitation raises a critical need for methods to make LLMs more efficient and deployable on edge devices, which often 

have strict constraints on computational resources. Several promising techniques have emerged to address this challenge, 

particularly those focused on model compression. These approaches, which involve reducing the precision of model weights and 

activations, offer potential avenues for shrinking model size and accelerating inference speed. This paper explores a range of 

model compression techniques, particularly emphasizing their applicability to LLMs. Our goal is to identify strategies that can 

enhance the efficiency of LLMs, enabling their deployment on devices with limited resources. Furthermore, the synergistic 

potential of combining multiple compression methods to optimize model performance is being investigated. The ultimate aim is 

to contribute to democratizing AI by making state-of-the-art models more accessible for real-world applications across diverse 

devices. 

Keywords - Large Language Models, Neural Network Quantization, Model Compression, Quantization, Knowledge Distillation, 

Pruning.   

1. Introduction   
   Machine learning has experienced rapid growth since 

2000, particularly in the past decade. Among its various 

branches, deep learning stands out, requiring significantly 

more data and computational power than traditional machine 

learning methods. A language model is a subset of machine 

learning focused on understanding and generating natural 

language. It works by interpreting the context of input prompts 

and producing the corresponding coherent and contextually 

relevant text.  
 

 Language models are generally categorized into four main 

types: Neural Language Models (NLM), Statistical Language 

Models (SLM) [1-5], Pre-trained Language Models (PLM)[ 

6-10], and Large Language Models (LLM). Each type 

employs a unique approach to natural language processing 

[14], utilizing different techniques and capabilities for 

managing linguistic data. 

Large language models, especially those involving 

complex neural networks with transformer architecture, 

demand high-performance Graphical Processing Units (GPUs) 

to process vast amounts of data and perform intricate 

calculations. However, the ideal scenario of unlimited access 

to GPU resources for training these models remains out of 

reach due to their prohibitively high costs. Though the endless 

possibilities of generative AI look promising and fascinating, 

it remains out of reach for many due to its requirement for high 

GPU resources. 

 

To achieve efficient, real-time inferencing through large 

language models [11][12][16] without sacrificing accuracy, 

it’s essential to rethink the entire process of designing, training 

[13,14,15] and deploying these models. A substantial body of 

research has been dedicated to tackling these challenges by 

optimizing neural networks [21] for better performance in 

http://www.internationaljournalssrg.org/
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areas like memory usage, thereby improving latency and 

energy consumption while maintaining a strong balance 

between generalization and accuracy. These efforts have led to 

a variety of strategies, which can be grouped into the following 

key categories. 

 

1.1. Integrated Design of Model Architecture and Hardware  

A more recent line of research has focused on adapting 

and co-designing neural network (NN) [18][20] architectures 

specifically for target hardware platforms. This approach is 

critical because the performance overhead of a neural network 

[19] component—such as latency and energy consumption—

can vary significantly depending on the hardware used. For 

instance, hardware equipped with a dedicated cache hierarchy 

can execute bandwidth-bound operations far more efficiently 

than systems without such a feature. Like NN architecture 

design, the initial efforts in architecture-hardware co-design 

were manual, with experts adjusting the NN architecture for 

specific hardware. However, more recently, automated 

techniques like AutoML and Neural Architecture Search 

(NAS) have been introduced to streamline this process. 

 

1.2. Pruning 

Pruning is a widely adopted method for reducing the 

memory requirement of Neural Networks (NNs) 

[24][25][26][27]. It involves selectively dropping neurons 

with minimal influence on the network’s output or loss 

function, resulting in a more efficient and sparsely connected 

model. Two primary forms of pruning discussed in this paper 

are static and dynamic. Each approach offers different benefits 

and compromises regarding computational efficiency and 

model accuracy. The following sections will delve into these 

pruning strategies, examining their strengths, drawbacks, and 

effects on overall model performance. 

 
1.3. Quantization 

       Quantization techniques offer an effective way to reduce 

the high costs of training Large Language Models (LLMs) by 

lowering their computational and resource requirements. By 

decreasing the number of bits used for each model weight, 

quantization significantly reduces the overall model size.  

 

This results in LLMs that consume less memory require 

less storage, are more energy-efficient, and provide faster 

inference times. These benefits make it possible for LLMs to 

run on a wider range of devices, including embedded systems 

and single GPU setups. There are two common types of 

quantization techniques [34-37]: Post-Training Quantization 

(PTQ) and Quantization-Aware Training (QAT). As the name 

implies, PTQ applies quantization to the neural network layers 

after the complete training process without requiring retraining 

or fine-tuning. In contrast, QAT applies quantization during 

the training itself. The approach used in this paper is QAT, 

where the student model is quantized layer by layer throughout 

the training process. 

1.4. Knowledge Distillation 

The fundamental concepts of knowledge distillation and 

transfer learning have been established for some time now. 

Earlier studies have [50][51] demonstrated that the 

information from an ensemble of models could be compressed 

into a single network. Later researchers expanded on this idea 

by exploring how shallow, wide, and fully connected networks 

could mimic the behavior of deeper neural networks [21]. 

 

Knowledge distillation (KD) [48][49] is a technique that 

trains smaller networks by leveraging the knowledge of larger, 

pre-trained models to enhance performance. In KD, the teacher 

network generates soft labels, which are then used to train the 

student network. This approach, which uses the knowledge 

embedded in previously trained models, has gained significant 

attention in various fields for tasks like model compression 

[22][23] and the development of learning algorithms. In this 

paper, KD has been explored in the context of training a 

quantized mixed-precision student model using reinforcement 

learning (QMPS-RL). 

 

1.5. Lightweight Model Redesign 

A key area of research has focused on optimizing neural 

network architectures [18][21] at both the micro and macro 

levels. At the micro-architecture level, this involves refining 

components like kernel types—such as depth-wise 

convolution or low-rank factorization—while at the macro-

architecture level, it addresses module types like residual or 

inception networks. Traditionally, architectural innovations 

were driven by manual searches, a method that proved 

inefficient and unsustainable at scale. This led to the 

emergence of new approaches like Automated Machine 

Learning (AutoML) and Neural Architecture Search (NAS), 

which automate the discovery of optimal network architectures 

while adhering to constraints related to model size, depth, and 

width.   

 

1.6. Low-Rank Decomposition 

Low-rank transformations are techniques used to 

approximate large matrices by smaller matrices to make 

computations more efficient. In the context of large language 

models [11][12][16], like GPT (Generative Pre-trained 

Transformer), low-rank transformations can be particularly 

useful for optimizing memory and computational 

requirements. Applying a low-rank approximation [31][32] to 

the weight matrix is highly effective, resulting in a 3× 

compression of the fully connected layer [22][23]. 

 

The main contributions are as follows:    

1. Provide a review of the following compression techniques 

a. Pruning [24][25] 

b. Quantization 

c. Knowledge Distillation 
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d. Low-rank Decomposition 

e. A combination of compression (CoC)  

2. Discuss two different types of pruning techniques: static 

and dynamic methods, and the way modes in which the 

model can be pruned – Offline vs Online. 

3. Compare and contrast two quantization methods, QAT 

[38][40] and PTQ [42][43] and also discuss different 

techniques (weights, activation, key query value) with 

different precision schemes (Fixed, Mixed precision, etc). 

4. Discussion of knowledge distillation techniques - 

response-based, feature-based, and relation-based. 

5. Briefly highlight the method, advantages, and 

disadvantages of low-rank decomposition. 

6. Finally, discuss the concept of combining multiple 

compression techniques [22]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Illustration of different compression techniques 

 

2. Methods 
2.1. Large Language Models 

Language models are a crucial subfield of machine 

learning that focuses on understanding and generating natural 

language [14]. These models are designed to comprehend the 

context of input prompts and generate coherent, contextually 

appropriate responses by predicting the missing components 

of the text. Broadly, language models can be categorized into 

4 broad types, with pre-trained language models (PLMs) [6-

10] and large language models (LLMs) [11][12][16] garnering 

significant attention in recent years. Each of these categories 

represents distinct approaches to natural language processing 

(NLP) [14], utilizing different techniques and possessing 

varying capabilities for processing linguistic data. While 

statistical language models [1-5] and neural language models 

have been explored for decades, the recent rise in popularity of 

PLMs and LLMs has marked a paradigm shift, with 

applications spanning across both academia and industry, 

including areas such as recommendation systems.
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Pre-trained language models [6-10] are first trained on 

vast amounts of text data before being fine-tuned for specific 

downstream tasks. These models, which leverage the 

Transformer architecture and self-attention mechanism [11]–

[15], have significantly advanced the field of semantic 

processing in NLP. A notable example of a PLM is BERT 

(Bidirectional Encoder Representations from Transformers), 

which is pre-trained on a large corpus of text using 

unsupervised methods, including masked language modeling 

and next-sentence prediction tasks. BERT [6] is then fine-

tuned for specific tasks such as question answering, sentiment 

analysis, and text classification. It has become the dominant 

framework in PLM research due to its efficiency, scalability, 

and exceptional performance across a wide range of tasks. In 

response to the growing demand for more efficient models, 

DistilBERT [17] emerged as a smaller version of BERT [6], 

maintaining similar levels of accuracy while being more 

lightweight and easier to deploy. This compact version is 

particularly advantageous for resource-constrained 

environments where faster inference times and reduced 

memory usage are critical. On the other hand, Large Language 

Models (LLMs) [11][12][16] build upon the foundational 

principles of PLMs but extend their capabilities by scaling 

both model size and the volume of training data. It has been 

observed that increasing the size of PLMs enhances their 

ability to perform effectively on a variety of downstream tasks. 

For instance, GPT-4, with its 1.8 trillion parameters, is a 

significantly larger model than traditional PLMs and shares 

similar pretraining objectives.   However, GPT-4’s increased 

scale allows it to outperform standard PLMs, particularly in 

solving more complex and nuanced tasks. In creative domains 

such as poetry, song lyrics, and fiction writing, GPT-4 exhibits 

remarkable proficiency in generating content that adheres to 

specific styles or themes, a capability that models like BERT, 

with only 340 million parameters, do not possess. BERT, 

primarily designed for tasks like sentence completion or 

masked word prediction, lacks the generative and creative 

capabilities required for these types of creative tasks. Despite 

the promising advancements brought by LLMs, their inherent 

need for large-scale data processing and distributed parallel 

training makes them highly resource-intensive and costly to 

train. As a result, continuous experimentation with various 

training strategies and optimization techniques is required to 

push the boundaries of what LLMs can achieve, though this 

remains a significant challenge from both a computational and 

financial perspective. In summary, while PLMs such as BERT 

and smaller variants like DistilBERT have revolutionized NLP 

by offering efficient, scalable solutions for a wide range of 

tasks, LLMs like GPT-3 represent the next frontier, pushing 

the limits of what is possible in language generation and 

understanding. 

 

3. Pruning  
Network [24][27] is a key technique used to reduce both 

memory size and bandwidth requirements. Developed in the 

early 1990s, pruning methods aimed to compress a trained 

large neural network [21] into a smaller version without the 

need for retraining. This enabled the deployment of neural 

networks in resource-constrained environments such as 

embedded systems. The pruning process [25-26] involves 

removing redundant parameters or neurons that do not 

significantly impact the model’s accuracy. These redundant 

components often correspond to weights that are either zero, 

close to zero, or repeated. By eliminating these parts, pruning 

reduces the model’s computational complexity. When pruned 

networks are subsequently retrained, there is an opportunity to 

escape local minima and potentially improve accuracy.  

 

Research on network pruning generally falls into two 

main categories: sensitivity calculation and penalty-term 

methods. Recent studies have continued to refine these 

approaches, often by combining elements from both 

categories. In addition, new pruning techniques have emerged. 

Modern network pruning strategies can be classified based on 

several criteria, such as 1) structured versus unstructured 

pruning, depending on whether the pruned network maintains 

symmetry; 2) neuron versus connection pruning, based on the 

type of element pruned; and 3) static versus dynamic pruning. 

Figure 8 illustrates the differences between static and dynamic 

pruning. In static pruning, all pruning steps are carried out 

offline before inference, whereas dynamic pruning occurs 

during runtime. Although there is some overlap between these 

categories, this paper will categorize network pruning methods 

as either static or dynamic. Figure 9 depicts the different levels 

of granularity at which pruning can occur.   

 

3.1. Static Pruning  

Static pruning refers to a pruning strategy where all 

pruning decisions are made before inference, typically during 

the training phase or as a post-processing step after the model 

has been trained. In this approach, the model is pruned once, 

and the removed parameters (e.g., weights, neurons, or filters) 

are no longer part of the model during deployment. These 

pruning decisions are based on predefined criteria such as the 

magnitude of the weights, their contribution to the loss 

function, or other importance scores derived from sensitivity 

analysis. The pruning process in static pruning is executed 

offline, and once the model has been pruned, it is then 

deployed in a fixed form, with no further pruning occurring 

during runtime. After pruning, the model typically undergoes 

a fine-tuning phase to adjust the remaining parameters and 

recover any accuracy loss that may result from the removal of 

certain weights or neurons. However, no additional pruning is 

performed during the inference stage. Static pruning can lead 

to significant improvements in efficiency, particularly in terms 

of memory usage and computation during inference, as the 

model’s architecture is fixed and optimized for deployment on 

resource-constrained platforms such as embedded systems, 

mobile devices, or edge devices.
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Fig. 2 Illustration of static pruning 

 

 

 

 

 

 

 

 

 

Fig. 3 Illustration of dynamic pruning 

 

3.2. Dynamic Pruning  

While static pruning offers significant benefits in terms of 

reducing the size and complexity of neural networks, it comes 

with notable limitations, particularly in its permanent 

alteration of the network structure. Except for recoverable 

pruning techniques, static pruning irreversibly eliminates 

weights or neurons, potentially leading to a degradation of 

model performance. Once pruned, the network cannot fully 

recover the lost information, even if the model is retrained. 

Although there have been efforts to develop methods to 

recover some of the pruned network capabilities, static pruning 

remains constrained in its ability to restore the original 

network functionality. 
 

In contrast, dynamic pruning [29, 30] operates more 

flexibly by making pruning decisions at runtime. This enables 

the model to determine, in real-time, which neurons, channels, 

or layers should be excluded from the further computation. 

Notably, dynamic pruning can mitigate the limitations inherent 

in static pruning by dynamically adjusting the network based 

on changing input data, thereby reducing computational 

overhead, bandwidth usage, and power dissipation. One key 

advantage of dynamic pruning is its ability to adjust to varying 

input characteristics, allowing for optimized computation 

during inference without the need for extensive retraining or 

fine-tuning during runtime.  
 

The effective implementation of dynamic pruning 

requires addressing several critical considerations. First, the 

decision-making system—responsible for determining which 

parts of the network to prune—plays a central role in the 

pruning process. Several key aspects of this decision system 

are as follows. 

 

3.2.1. Side Decision Networks 

A separate side network can be used to perform pruning, 

which tends to yield high performance but is often more 

challenging to train [153]. 

3.2.2. Additional Connections 

These may be attached to the original network during 

either the inference or training phases, providing auxiliary 

information for pruning decisions. 
 

3.2.3. Learnable Characteristics 

Pruning decisions can also be influenced by connection 

characteristics that are learned through standard 

backpropagation algorithms. 
 

3.2.4. Pruning Techniques 

Channel-Wise Pruning: This approach involves removing 

entire channels from layers   

Layer-Wise Pruning: Entire layers are pruned based on 

their importance or contribution to the network’s overall 

performance. 
 

Block-Wise Pruning: Smaller groups of layers or units are 

pruned together. 
 

Network-Wise Pruning: Involves pruning large sections 

of the network or entire sub-networks. The selected pruning 

level influences the resulting model’s architecture and is 

directly related to hardware considerations. 
 

3.2.5. Input Data Consideration 

One-Shot Information Feeding: In this approach, the 

entire input is fed to the decision system in a single pass, which 

allows for real-time pruning based on complete input data. 

Layer-Wise Information Feeding: This method feeds data 

to the decision system in iterative windows, allowing for more 

granular control over the pruning process during the forward 

pass. 
 

Decision Score Calculation 

Norm-Based Scoring: One approach to pruning decisions 

involves using a norm-based score, which quantifies the 

importance of weights or neurons. 
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Alternative Scoring Methods: Other methods may utilize 

different criteria to assess the importance of individual 

elements in the network. 

 

Automatic Thresholding or Dynamic Mechanisms: 

Alternatively, thresholds may be dynamically adjusted during 

runtime based on real-time performance metrics. 

 

Stopping Criteria: Layer-Wise and Network-Wise 

Pruning: Some algorithms skip pruned layers or sub-networks 

during runtime, thereby simplifying computation without 

compromising the output. 

 

Dynamic Data Path Selection: Certain dynamic pruning 

systems allow the data path to be selected dynamically, 

depending on which components of the network are active or 

pruned. 

 

Termination and Output Generation: Some systems may 

terminate computation early, outputting predictions once 

sufficient processing has occurred. In such cases, the 

remaining layers are considered pruned. 

 

Furthermore, dynamic pruning techniques can also be 

applied to networks that have already undergone static 

pruning, potentially further reducing the model’s 

computational and bandwidth requirements.  

 

Dynamic pruning, while offering significant advantages in 

terms of adaptability and computational efficiency, also 

presents several critical challenges that must be addressed for 

its successful implementation in Large Language Models 

(LLMs) [13]. These challenges include real-time pruning 

overhead, the trade-off between model accuracy and 

efficiency, the complexity of decision-making systems, and 

the interdependencies between model components.  

 
 Real-Time Pruning Overhead 

One of the principal challenges associated with dynamic 

pruning in LLMs is the computational overhead introduced by 

the need to make pruning decisions during runtime. The 

process of evaluating and selecting which components (e.g., 

neurons, attention heads, or entire layers) to prune is 

computationally intensive and can introduce additional latency 

into the inference pipeline. This overhead may diminish the 

benefits of pruning by offsetting the computational savings 

gained from reducing the model’s size or complexity. 

 

For dynamic pruning to be effective in real-time 

applications, the decision-making process must be highly 

efficient. The algorithms used to evaluate which components 

to prune must be lightweight and executed with minimal 

latency to ensure that the pruning does not impair the overall 

system performance, especially in applications where response 

time is critical, such as real-time [14] processing tasks or 

interactive systems. Ensuring that pruning decisions are made 

swiftly and with minimal resource usage is crucial to 

maintaining the efficacy of dynamic pruning. 

 

 Accuracy vs. Efficiency Trade-Off 

As with any pruning technique, dynamic pruning involves 

an inherent trade-off between accuracy and efficiency. While 

pruning aims to reduce the computational load by eliminating 

unnecessary components, it may also result in a loss of model 

performance if important parameters or structures are 

removed. This trade-off is particularly pronounced in tasks that 

require high precision, such as sentiment analysis, medical text 

processing, or legal document analysis, where even small 

degradations in accuracy can have significant consequences. 

Maintaining a balance between pruning efficiency and model 

accuracy is critical. This requires ongoing evaluation and fine-

tuning of dynamic pruning strategies [29, 30] to ensure that the 

reduction in computation and memory usage does not come at 

the expense of the model’s effectiveness in performing its 

intended tasks. Continuous monitoring of the model’s 

performance and dynamic adjustment of pruning parameters 

are essential for optimizing this balance and minimizing 

accuracy degradation. 

 

Complexity of Decision Systems 

Designing and implementing decision-making systems 

for dynamic pruning in Large Language Models (LLMs) 

presents a significant challenge. These systems are tasked with 

determining which parts of the model should be pruned based 

on input data and runtime conditions, a process that becomes 

more intricate when advanced techniques, such as 

Reinforcement Learning (RL) or adaptive pruning strategies, 

are employed to guide these decisions. Training such decision 

systems is computationally demanding, particularly when 

utilizing auxiliary networks or RL algorithms that iteratively 

optimize pruning strategies. The incorporation of these 

decision-making components introduces additional 

complexity both during the training phase and at deployment. 

While they increase the computational load during training, 

they can also lead to higher model complexity during 

inference, potentially counteracting the intended goal of 

reducing resource consumption. Therefore, developing more 

streamlined and efficient decision systems—without 

compromising their effectiveness—remains an ongoing 

challenge. 

Interdependence of Model Components 

Another significant challenge in the dynamic pruning of 

LLMs is the interdependence between model components. In 

complex architectures like transformers, components such as 

attention heads, layers, and neurons are highly interconnected. 

Removing or pruning one component may have cascading 
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effects on the performance of other interconnected 

components, making it difficult to isolate and prune individual 

units without inadvertently affecting the overall model 

behavior. 

This interdependency complicates the identification of 

which components can be pruned without causing adverse 

effects on model accuracy. Dynamic pruning strategies must 

account for these interdependencies to avoid unintentional 

disruptions to the model’s functionality.  

 

For instance, pruning a particular attention head in one 

layer could impact the ability of other attention heads to 

capture relevant information, potentially leading to a decrease 

in model performance. Developing dynamic pruning 

techniques that carefully evaluate the relationships between 

components and preserve the model’s integrity is a key 

challenge. 

 

4. Quantization 
Quantization techniques offer a promising solution to 

mitigate the high computational and resource costs associated 

with training and deploying large language models (LLMs). 

By reducing the bit-width representation of each model 

weight, quantization significantly decreases the overall size of 

the model.  

 

This reduction not only lowers the memory and storage 

requirements but also enhances energy efficiency and 

accelerates inference times. Consequently, quantized LLMs 

are better suited for deployment across a wider range of 

devices, including those with limited computational resources, 

such as embedded systems and single-GPU environments. 
 

The challenge of deploying AI models on resource-

constrained platforms, such as SLAM (Simultaneous 

Localization and Mapping) robotics devices [19][20] or 

decentralized Web3 applications, is particularly pronounced. 

These systems face difficulties in running full-scale models 

due to their limited capacity for handling the intensive 

computations typically required by large models [21]–[24]. In 

such contexts, quantization becomes a critical enabling 

technology, as it reduces both the model’s size and its 

computational burden, thus making it feasible to deploy LLMs 

in environments with strict resource limitations. Various 

methods for model quantization exist, each targeting different 

optimization goals, including faster computation, minimal 

accuracy degradation, and reduced model parameter size. This 

section explores several quantization techniques, with a focus 

on post-training quantization, which allows for efficient 

deployment without the need for extensive retraining, making 

it an attractive approach for many practical applications. There 

are two broad categories of quantization: quantization-aware 

training [41] and post-training quantization, respectively. 

 
 

 

 

 

 

 

 

 

 

Fig. 4 Evolution of Quantization technique from left to right. The blue rectangle represents quantized data, while the white rectangle represents 

full precision (FP32) format 

 

5. Post Training Quantization  
Post-training quantization (PTQ) [42][43] is to apply 

quantization after the model has been fully trained. Two 

common approaches are used to achieve this:  

 

5.1. Dynamic Quantization 

In this method, quantization occurs at runtime after each 

activation. However, this approach introduces additional 

computational overhead, potentially slowing down 

performance due to the extra processing required for each 

activation.  

 

5.2. Static Quantization 

Here, the quantization parameters are pre-computed 

during the quantization process before runtime. This method 

ensures the quantization of weights while  

 

6. Quantization Aware Training  
The model accounts for the errors introduced by 

quantization by incorporating quantization operators at each 

activation during the training phase. These operators enable 

the model to recognize and adapt to quantization errors 

throughout the backpropagation process.  
 

As a result, this approach typically leads to reduced 

performance degradation while also facilitating faster 

computation [39][40][41].  
 

In general, how is quantization applied in LLM 

feedforward networks during the training process? Consider, 

for example, a dataset with N rows and a neural LLM model 

with L feedforward layers. Each layer, say, for example, layer 

l has weight parameters 𝑤𝑙 , which are the model’s full-

precision weights.   
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Quantization helps reduce the precision of the weights 

and/or activations (e.g., from floating-point to fixed-point). 

For each layer, the weights 𝑤𝑙 , and activations 𝑥𝑙 , are 

quantized using a scale s and a zero-point z. The scale is 

calculated based on the maximum and minimum values of the 

weights, while the zero point is used to shift the values so they 

fit within the quantized range. The quantization of float 0 is z. 

This is an example of how weight quantization happens in 

QAT. 

s = (𝑤𝑙𝑚𝑎𝑥− 𝑤𝑙𝑚𝑖𝑛) / (𝑤𝑙𝑞𝑚𝑎𝑥− 𝑤𝑙𝑞𝑚𝑖𝑛) 

z =(𝑤𝑙𝑞𝑚𝑎𝑥 ) − ( 𝑤𝑙𝑚𝑎𝑥 /s) 

   Quantized weight =  𝑤𝑙𝑞 = (𝑤𝑙 / s) + z 

 

7. Granularity of Quantization 
The granularity of quantization in LLMs [13] plays a 

crucial role in balancing model efficiency and performance. 

Quantization techniques can be tailored based on the specific 

requirements of deploying and training an LLM, with different 

levels of granularity offering trade-offs between computational 

savings and potential accuracy loss. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Illustration of QAT vs PTQ Quantization technique 

 
7.1. Per layer Quantization for LLMs 

All the filters within the same layer of the LLM share 

identical quantization parameters. The quantization range is 

determined collectively for all filters within the layer, typically 

based on the range of values observed across all filters in that 

layer. This approach simplifies the quantization process by 

applying a uniform set of parameters to each filter, resulting in 

reduced computational complexity. 

        

However, per-layer quantization often introduces higher 

quantization errors, particularly when individual filters have 

varying value distributions. These errors can accumulate 

across the layers of an LLM, potentially leading to a 

degradation in the model’s overall accuracy. In the context of 

LLMs, where precise language understanding and generation 

are critical, the trade-off between reduced model size and 

potential loss of performance becomes more pronounced. 

While per-layer quantization may be beneficial for scenarios 

with stringent resource constraints, its use in LLMs needs 

careful consideration to avoid significant performance 

degradation. 

 

7.2. Per Channel Quantization for LLMS 

To address the performance issues associated with per-

layer quantization, per-channel quantization offers a more 

refined approach. Rather than applying a uniform quantization 

strategy at the layer level, quantization is performed at a finer 

granularity—specifically, at the filter level within each layer 

of the LLM. In this method, each filter is assigned its own set 

of quantization parameters tailored to the specific range of 

values observed within that filter. 

 

Per-channel quantization introduces increased complexity 

compared to per-layer methods, requiring a more detailed 

analysis of the individual filters and their respective value 

distributions. However, this approach significantly reduces 

quantization errors for each filter, leading to improved model 

performance relative to lower-granularity techniques. For 

LLMs, where model accuracy is paramount for text generation, 

sentiment analysis, and question answering tasks, per-channel 

quantization strikes a better balance between computational 

efficiency and accuracy preservation. 

 

While there are two broader categories of quantization, 

there are various methods within each that could be adapted 

based on the needs. They are as follows.  

 
7.3. Weight Quantization 

Instead of applying quantization to all parameters of a 

model, weight quantization selectively targets only specific 

components, typically focusing on the weight matrices while 

leaving activation values unquantized and in their original 

precision. This selective quantization approach effectively 

reduces the model’s memory and storage requirements, 

leading to more efficient deployments without sacrificing the 

integrity of activation values. 
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7.4. Activation Aware Quantization (AWQ) 

Traditional weight quantization applies uniform 

quantization across all parameters within the weight matrices. 

However, alternative strategies seek to further optimize the 

process by reducing the number of parameters to be quantized, 

thus improving the speed and efficiency of quantization. One 

such strategy is Activation-Aware Weight Quantization 

(AWQ) [44], which introduces a more selective approach by 

recognizing that not all weights contribute equally to the 

model’s performance. AWQ identifies the most critical 

weights based on the magnitudes of their corresponding 

activations, retaining these essential weights in full precision 

while quantizing less significant weights. This targeted 

approach minimizes accuracy degradation while reducing 

computational costs, effectively balancing efficiency and 

model performance. 

 

7.5. Attention-Aware Weight Quantization 

A more advanced technique, attention-aware weight 

quantization, takes advantage of the Hessian trace to assess the 

importance of weight matrices [32]. By leveraging the 

attention mechanism — a core component in LLMs — this 

method allocates higher-bit precision to weights deemed more 

important based on their attention scores. Weights with lower 

importance are quantized to lower-bit precision, adopting a 

mixed-precision quantization approach. This strategy leads to 

improved computational efficiency and performance, 

particularly in LLMs, without sacrificing model accuracy. 

Attention scores enable more precise quantization, ensuring 

that critical parameters are preserved while reducing the 

overall model size. 

 

8. Determining Precision for Quantization 
Fixed-Point Representation is a method commonly used 

in quantization, where numbers are expressed with a fixed 

number of digits after the decimal point. Unlike floating-point 

representation, which allows the position of the decimal point 

to shift dynamically, fixed-point precision maintains a constant 

number of digits after the decimal. This approach is especially 

effective in reducing the computational and memory demands 

of LLMs by constraining the bit-width of parameters, such as 

weights and activations [34][35][38], while still preserving 

acceptable levels of accuracy. Fixed-point and integer 

quantization offer several notable advantages. 

 

Fixed-point or integer precision greatly minimizes the 

memory requirements of models by using a fixed and generally 

smaller number of bits per value (e.g., 8 bits instead of 32 or 

64 bits for floating-point representation). This compact format 

allows large models to be stored more efficiently, particularly 

advantageous in resource-constrained environments such as 

mobile devices and edge-computing platforms. 

 

Additionally, hardware designed for fixed-point 

computations can handle smaller bit-width values more 

efficiently than floating-point equivalents. Fixed-point 

arithmetic operations, including addition, multiplication, and 

comparison, require fewer computational resources, making 

this precision format well-suited for real-time or low-latency 

applications. Moreover, fixed-point operations are inherently 

less computationally demanding, leading to lower power 

consumption. This characteristic makes fixed-point 

quantization an ideal choice for battery-powered devices, 

where energy efficiency is critical. 

 

While there are advantages to a methodology, there are 

also some disadvantages to this method. 

 

8.1. Restricted Range 

The primary limitation of fixed-point precision lies in its 

restricted dynamic range compared to floating-point 

representation. Fixed-point or integer formats cannot represent 

extremely small or large values with high fidelity, which 

introduces quantization errors. These errors are particularly 

pronounced in scenarios involving neural networks with very 

large or very small weights, potentially degrading model 

performance on tasks requiring precise computations [19][20]. 

 

8.2. Training Complexity 

Converting between fixed-point and floating-point 

representations adds complexity to training and deployment 

pipelines. Quantization, especially during training through 

methods such as Quantization-Aware Training (QAT), 

demands meticulous handling. This not only complicates the 

workflow but can also lead to increased training times, thereby 

affecting efficiency. 

 

8.3. Sensitivity 

Furthermore, the fixed bit-width nature of fixed-point 

representation reduces the model’s capacity to capture fine-

grained variations in data, such as subtle weight adjustments 

during training. This constraint can be particularly detrimental 

for applications requiring high precision, such as scientific 

computing or domains dealing with sensitive and intricate data 

patterns. 

 
8.4. Mixed Precision 

A key limitation of earlier discoveries in quantization 

techniques is their requirement for all neural network (NN) 

parameters to be quantized using a uniform precision. While 

some approaches, as mentioned in Section 5, have attempted 

to apply different bit widths for weights, biases, and 

activations, these bit widths are still typically uniform within 

each type of parameter. This uniformity creates inefficiencies. 

Specifically, in the case of integer/fixed-point quantization, the 

precision of weights, for example, is often constrained by the 

most sensitive layer, which may require more bits for 

accuracy. This results in an unnecessarily high bit width for 

less sensitive layers that could have functioned with fewer bits. 

As a result, the overall compression rate is reduced, and the 

model could potentially be made smaller without sacrificing 
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accuracy if fewer bits were allocated to the less sensitive 

layers.  

 

Mixed Precision Quantization seeks to address these 

issues by combining the benefits of multiple quantization 

schemes. It extends the idea of using different bit widths for 

weights, biases, and activations to an even finer granularity: 

layer-level quantization. In this approach, each layer in the 

neural network is allocated a tailored bit width and precision 

based on its sensitivity to quantization. Layers more sensitive 

to precision loss (typically deeper or more complex layers) are 

assigned higher bit widths, while less sensitive layers can use 

lower bit widths. This strategy effectively balances the benefits 

of integer/fixed-point, binary, and ternary quantization, 

leading to improved accuracy at higher compression rates and 

more efficient inference. 

 

However, the key challenge with mixed precision 

quantization [45][46] lies in determining the optimal bit width 

for each layer, as the search space for potential configurations 

grows exponentially with the number of layers. 

 
8.5. Hessian-aware Quantization (HAWQ) 

The approach presented in Hessian-Aware Quantization 

(HAWQ) [45] provides a systematic method during 

Quantization-Aware Training (QAT) to determine the 

precision required for each layer’s weights and activations 

while either maintaining or improving the state-of-the-art 

quantization accuracy. This method utilizes second-order 

information, specifically the second-order partial derivatives, 

which are encapsulated in the Hessian matrix (the matrix of 

second derivatives), to assess the sensitivity of weights and 

activations to quantization. By leveraging this information, the 

minimum bit width necessary for each layer to preserve the 

network’s overall accuracy is determined. 

 
The central insight from this approach is that layers with 

a higher Hessian spectrum (i.e., larger eigenvalues) exhibit 

more volatile loss behaviors, meaning that these layers are 

more susceptible to fluctuations in loss when even small 

amounts of quantization noise, such as rounding errors, are 

introduced. Consequently, these layers are more sensitive to 

quantization and require a higher bit width to maintain 

accuracy. Conversely, layers with smaller eigenvalues tend to 

have a flatter loss landscape, exhibiting less sensitivity to 

quantization noise. As a result, these layers can tolerate lower 

bit widths without significantly affecting model performance. 

 

This observation aligns with the understanding that flatter 

loss regions amplify quantization noise less than regions with 

sharper curvature. Based on this principle, HAWQ selects bit 

widths for each layer according to the Hessian information, 

manually assigning higher bit widths to layers with higher 

sensitivity to quantization and lower bit widths to less sensitive 

layers. 

Another critical finding from HAWQ is the importance of 

the order in which layers are quantized, as this ordering can 

have a substantial impact on the accuracy of the final model. 

HAWQ prioritizes the quantization of layers with higher 

Hessian values and a larger number of parameters, as these 

layers are more sensitive to quantization noise. These layers 

are first quantized and retrained, while the less sensitive layers 

are quantized subsequently. The rationale behind this approach 

is that quantizing and retraining the less sensitive layers first is 

less effective. These layers are more resilient to quantization 

noise and adjust well to the initial introduction of noise, 

whereas it is more beneficial to “lock in” the quantized values 

of the sensitive layers first. This allows the less sensitive layers 

to recalibrate during retraining, enabling them to adjust their 

parameters to the newly quantized sensitive layers without 

significant degradation in performance. Even if this 

recalibration causes some parameters to drift further from their 

original floating-point values, their inherent robustness 

ensures that their quantization minimises the network’s overall 

accuracy. 

 
Hardware Aware Precision One of the primary objectives 

of quantization is to reduce inference latency. However, the 

speedup achieved from quantization varies across different 

hardware platforms. The effectiveness of quantization is 

hardware-dependent, with factors such as on-chip memory, 

bandwidth, and cache hierarchy influencing the extent of 

latency reduction. To fully capitalize on the advantages of 

quantization, it is crucial to account for these hardware-

specific considerations, making hardware-aware quantization 

an essential approach for optimizing performance [46]. 

Notably, the study employs a reinforcement learning agent to 

determine optimal mixed-precision quantization settings, 

using a look-up table to correlate latency with different bit 

widths for various layers. However, this approach relies on 

simulated hardware latency. To overcome this limitation, 

recent research directly deploys quantized operations on actual 

hardware, measuring the real-world deployment latency for 

each layer across varying bit precisions. 

 

9. Knowledge Distillation 
Memory and processing power are key considerations, 

especially in real-world applications where resources are 

limited, such as on mobile devices or embedded systems. The 

concept of Knowledge Distillation (KD) [48-51] was 

introduced by Geoffrey Hinton and colleagues in 2015. The 

core idea is that a teacher model—typically a large and highly 

accurate deep neural network—can guide a smaller student 

model by providing “soft targets.” These are probabilistic 

outputs that convey the model’s confidence for each class, 

offering richer, more nuanced information compared to hard 

labels (which indicate only a single class, e.g., 0 or 1 for binary 

classification). Soft targets not only help the student model 

make the correct classification but also allow it to learn the 
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underlying patterns and relationships captured by the teacher, 

ultimately enhancing the student’s ability to generalize. 

The choice of teacher-student architectures is vital to the 

success of knowledge distillation. Typically, the teacher is a 

larger, more complex, and more accurate model, while the 

student is smaller, faster, and less resource-intensive. The 

challenge lies in transferring the rich knowledge from the 

teacher to the student while maintaining the student’s 

efficiency. 

 

Knowledge distillation has proven effective across 

multiple machine learning domains, including Natural 

Language Processing (NLP), Computer Vision, and Speech 

Recognition. One major advantage of KD is its ability to 

compress large models, making them more suitable for 

deployment on resource-constrained devices without 

significant performance loss. Additionally, KD can improve 

the generalization capabilities of smaller models, especially 

when they are trained on limited data, by leveraging the 

teacher’s knowledge. 

 

In the context of Large Language Models (LLMs) and 

Transformer-based architectures, KD helps create compact yet 

high-performance models. These distilled models are ideal for 

deployment on devices with limited computational power and 

memory, making them suitable for edge computing 

applications. By transferring knowledge from a large pre-

trained teacher model, the student benefits from the teacher’s 

expertise. 

 

Various architectural approaches, such as multi-branch 

networks or parallel training, have been explored to optimize 

this knowledge transfer process. Distillation leverages 

different types of knowledge, each contributing uniquely to the 

training of the student model. The main types of knowledge 

utilized in KD are as follows:

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Illustration of knowledge distillation technique 

9.1. Response-Based Knowledge Distillation 

Response-based knowledge [51-53] in knowledge 

distillation typically refers to the neural response of the final 

output layer of the teacher model. The core idea behind this 

approach is to directly mimic the final predictions of the 

teacher model, particularly its logits. These logits encapsulate 

not only the final classification decision but also the model’s 

confidence in each possible class. By training the student 

model to replicate the teacher’s output, response-based 

distillation enables the student to learn the generalization 

patterns captured by the teacher model, such as the relative 

likelihoods of various classes, without requiring access to the 

true hard labels. Response-based knowledge distillation offers 

several advantages, making it a popular method for 

transferring knowledge from a teacher model to a student 

model. Its simplicity stands out, as it only requires transferring 

the teacher’s output logits or probabilities, avoiding the 

complexity of accessing and aligning intermediate layers. This 

method is computationally efficient and well-suited for 

scenarios where the teacher’s internal feature representations 

are inaccessible. It is also model agnostic, enabling distillation 

between models with differing architectures, and provides a 

regularization effect by leveraging the teacher’s soft targets, 

which encode uncertainty and relative class confidence, 
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enhancing the student’s generalization. Furthermore, 

response-based distillation scales effectively in distributed 

systems, as it involves transferring relatively small output data. 

  

However, this approach has limitations. It only captures 

the knowledge present in the teacher’s output, overlooking the 

rich information embedded in intermediate layers or feature 

representations, which can lead to suboptimal performance on 

complex tasks. Additionally, the method’s success heavily 

depends on the quality of the teacher model, as poor teacher 

outputs can negatively affect the student’s learning. 

 
9.2. Feature-based Knowledge Distillation 

   In this form of knowledge distillation, the student model 

is trained to mimic the intermediate feature representations or 

activations of the teacher model [53]. This approach 

emphasizes transferring the teacher model’s internal feature 

representations to the student. 

The student model aligns its feature maps or activations 

with those of the teacher model’s corresponding layers. This 

process can include transferring intermediate representations 

from the deep transformer layers of a large language model 

(LLM) to a smaller LLM, enabling the student to learn similar 

representations at each layer. Techniques such as attention 

matching, where the student replicates the teacher’s attention 

maps, are often employed to enhance this learning process. 

 

       This approach offers several advantages. First, it enables 

deeper knowledge transfer by capturing the internal 

representations of the teacher model, which are often rich in 

semantic and structural information. This can significantly 

enhance the student model’s performance, especially for 

complex tasks requiring nuanced understanding. Second, 

feature-based KD can promote layer-wise alignment, allowing 

the student to mimic the teacher’s hierarchical learning 

process. Third, it is particularly effective for tasks like object 

detection and segmentation, where spatial and feature-level 

understanding is critical. Additionally, techniques like 

attention map alignment or activation matching can further 

improve the transfer efficiency. 

 

       However, feature-based distillation also has notable 

disadvantages. One key limitation is its computational 

overhead, as aligning intermediate features often requires 

substantial memory and processing power, especially for large 

models. This makes it less suitable for resource-constrained 

environments. Moreover, the method is architecture-sensitive, 

as effective feature alignment typically requires the teacher 

and student models to have similar layer structures or spatial 

dimensions, limiting flexibility. Another challenge is the 

increased complexity in implementation, as feature extraction 

and alignment demand careful design choices, such as 

selecting which layers to align and defining appropriate loss 

functions. 

 

9.3. Relation-based Knowledge Distillation 

This method focuses on transferring relational knowledge 

from the teacher to student models. Rather than directly 

aligning feature maps or output distributions, the student 

model learns the relative relationships between various 

components or features in the teacher model. These 

relationships may include interactions between token pairs, 

contextual dependencies, or attention patterns. In the case of 

relationship-based Knowledge Distillation (KD) for Large 

Language Models (LLMs), this typically involves transferring 

the attention or interaction patterns between tokens or layers in 

the teacher model to the student model.  
 

For example, the student may learn how specific tokens 

interact within a self-attention mechanism by observing the 

teacher model’s attention distribution over those tokens. This 

is the most complicated and highly resource-intensive method, 

and it is not a commonly used technique in LLM KD to train 

smaller models. Although complicated, it has several 

advantages: First, it captures more holistic and structural 

information, emphasizing the relationships between data 

samples rather than isolated feature representations. This is 

particularly useful for tasks where understanding relationships, 

such as clustering, ranking, or graph-based problems, is 

critical. Secondly, it provides additional regularization by 

encouraging the student model to replicate the teacher’s 

understanding of data relationships, which can lead to 

improved generalization and robustness. 
 

10. Distillation Schemes 
      This section provides an overview of the different 

distillation strategies (i.e., training approaches) for both 

teacher and student models. Knowledge distillation learning 

schemes can be broadly classified into three main categories—

offline distillation, online distillation, and self-distillation—

based on whether the teacher model is updated simultaneously 

with the student model. Offline Distillation Most traditional 

knowledge distillation methods operate in an offline manner 

[53][54][55]. In standard knowledge distillation, the 

knowledge is transferred from a pre-trained teacher model to a 

student model.  
 

 This process generally unfolds in two phases: (1) the 

teacher model is initially trained on a set of training samples 

before the distillation step, and (2) once trained, the teacher 

model’s knowledge, in the form of logits or intermediate 

features, is used to guide the student model’s learning during 

the distillation phase. The first phase, involving the training of 

the teacher model, is typically assumed to be predefined and is 

not usually discussed in detail within the context of knowledge 

distillation. Consequently, little attention is given to the 

teacher model’s architecture or how it relates to the student 

model. Instead, offline distillation methods primarily focus on 

improving various aspects of the knowledge transfer process, 

such as the design of knowledge representations and the loss 

functions used to match features or distributions. 
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Fig. 7 Illustration of offline distillation 

 

The main advantage of offline distillation lies in its 

simplicity and ease of implementation. For example, the 

teacher model may consist of a collection of models trained 

using different software frameworks or located on different 

machines and the extracted knowledge can be cached for later 

use. Offline distillation generally involves a one-way transfer 

of knowledge, with a two-phase training procedure where the 

teacher’s knowledge is used to supervise the student model’s 

learning.  
 

However, a key limitation is that the training of the teacher 

model is resource-intensive and time-consuming, and it 

remains unavoidable even in offline distillation. On the other 

hand, the student model’s training in offline distillation is 

typically more efficient, benefiting from the guidance provided 

by the teacher model. Additionally, a fundamental challenge 

remains: the substantial capacity gap between the large teacher 

model and the smaller student model. Consequently, the 

student often heavily depends on the teacher model’s 

knowledge, making it difficult to achieve a fully autonomous 

student model. 
 

Online Distillation While offline distillation methods are 

simple and effective, several limitations have sparked 

increasing attention from the research. To address these 

shortcomings, online distillation [52] has emerged as an 

alternative, particularly beneficial when a large-capacity, high-

performance teacher model is unavailable. In online 

distillation, both the teacher and student models are updated 

simultaneously, enabling the entire knowledge distillation 

process to be trained end-to-end. This paradigm has gained 

significant interest in recent years, leading to the development 

of various online distillation approaches. 
       

Online distillation [49][59] offers the advantage of a one-

phase, end-to-end training process, often benefiting from 

efficient parallel computing. However, existing online 

approaches—such as mutual learning—still struggle with 

integrating high-capacity teacher models in online settings, 

which presents an intriguing avenue for further research. 

Understanding the relationship between teacher and student 

models in online environments is a critical and unresolved 

issue in the field. 

 

 

 

 

 

 
 

 
Fig. 8 Illustration of online distillation 

Self-Distillation In self-distillation, the same network is 

used for both the teacher and student models. This approach 

can be viewed as a specific instance of online distillation. For 

instance, Zhang et al. (2019b) [33] introduced a novel self-

distillation method where knowledge from the deeper layers of 

the network is transferred to the shallower layers. A similar 

approach, termed self-attention distillation, was proposed for 

lane detection, where the network leverages its attention    

 

In addition to these approaches, several innovative self-

distillation methods [52] have emerged recently. Yuan et al. 

(2020) [62] introduced a teacher-free knowledge distillation 

framework based on label smoothing regularization. Hahn and 

Choi (2019) [57] proposed a novel variant of self-knowledge 

distillation, where the “self-knowledge” consists of predicted 

probabilities rather than traditional soft probabilities. These 

predicted probabilities are derived from the feature 

representations of the training model, reflecting the data 

similarities in the feature embedding space.  

 

Yun et al. (2020) introduced class-wise self-knowledge 

distillation, aiming to match the output distributions between 

intra-class samples and augmented samples from the same 

source within the same model. Moreover, Lee et al. (2019a) 

[58] applied self-distillation for data augmentation, distilling 

the augmentation-based self-knowledge into the model itself. 

Other approaches, such as those by Furlanello et al. (2018) [60] 

and Bagherinezhad et al. (2018) [61], employ self-distillation 

to optimize deep models by using a teacher-student 

optimization framework with identical architectures. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 9 Illustration of Self distillation 
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The concepts of offline, online, and self-distillation can 

also be intuitively compared to human teacher-student learning 

dynamics. Offline distillation involves a knowledgeable 

teacher imparting knowledge to a student; online distillation 

features both teacher and student learning collaboratively, 

while self-distillation corresponds to a student independently 

acquiring knowledge. Furthermore, these distillation strategies 

can complement each other by leveraging their respective 

strengths. For example, a multiple knowledge transfer 

framework has been proposed to integrate both self-distillation 

and online distillation effectively, combining the advantages 

of each approach to enhance model performance. 

 

11. Low-Rank Decomposition 
Low-rank decomposition is a technique used to 

approximate large, dense matrices by expressing them as the 

product of smaller, lower-rank matrices. This approach 

leverages the idea that many large matrices, particularly in 

neural networks, contain significant redundant information 

that can be captured with fewer parameters. In the context of 

LLMs, low-rank decomposition is employed to reduce the 

memory and computational overhead associated with the 

massive weight matrices, particularly in layers like attention 

mechanisms and feedforward networks in Transformer 

architectures. By approximating these large matrices, low-rank 

decomposition helps shrink the model size, leading to faster 

inference times and lower memory requirements, making 

LLMs more efficient and deployable in resource-constrained 

environments. However, while the technique offers notable 

advantages, such as reduced computational complexity and 

improved efficiency, it also comes with trade-offs. The 

primary disadvantage is a potential loss in model accuracy, as 

the low-rank approximation may not fully capture the 

complexity of the original model. 

 

In the context of Large Language Models (LLMs), low-

rank decomposition can be used to reduce the computational 

complexity and memory requirements of large, dense-weight 

matrices. Just as in convolutional neural networks (CNNs), 

where low-rank decomposition accelerates convolutional 

operations, applying this technique to LLMs can improve the 

efficiency of their fully connected layers, which often have 

enormous parameter counts. 

 

12. Combination of Compression (CoC) 
Throughout this paper, various compression techniques 

have been discussed. Combining multiple compression 

methods within the same model to create smaller models with 

minimal accuracy loss is an approach that has been used for 

some time. For instance, by combining pruning and 

quantization, the number of parameters is reduced, and further 

precision reduction leads to a significant reduction in model 

size. Similarly, applying quantization to the student model 

derived through knowledge distillation presents an intriguing 

area for future research. 
 

13. Conclusion 
This survey paper highlights the most widely used 

compression techniques today, including pruning, 

quantization, knowledge distillation, low-rank decomposition, 

and the combination of multiple compression methods (CoC). 

An in-depth analysis of each technique explores the various 

methods within each category. Different types of pruning were 

discussed—static and dynamic—and examine how structured 

and unstructured approaches can be used to prune layers 

effectively. Quantization techniques are divided it into two 

main types: quantization-aware training and post-training 

quantization. Explored how these techniques are applied to 

query-key pairs, activations, and weights, and also discussed 

the impact of fixed-precision versus mixed-precision 

quantization, among other considerations. Knowledge 

distillation, covers three types of teacher-student models: 

feature-based, relation-based, and result-based, each of which 

can be further adapted into online, offline, and self-distillation 

techniques. 

 

Finally, explored how the low-rank decomposition 

technique can be applied to large language models (LLMs). 

This survey is the first comprehensive paper to summarize 

these key compression techniques, providing a valuable 

resource for ongoing research in the field. 
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